返回

大数据技术:Python、OpenCV、TensorFlow深度学习与计算机视觉、图像识别329页

搜索
推荐 最新 热门

大数据技术:Python、OpenCV、TensorFlow深度学习与计算机视觉、图像识别329页

资料简介

内容旨在掌握深度学习基本知识和特性的基础上,培养使用TensorFlow+OpenCV进行实际编程以解决图像处理相关问题的能力。共13章,内容包括计算机视觉与深度学习的关系、Python的安装和使用、Python数据处理及可视化、机器学习的理论和算法、计算机视觉处理库OpenCV、OpenCV图像处理实战、TensorFlow基本数据结构和使用、TensorFlow数据集的创建与读取、BP神经网络、反馈神经网络、卷积神经网络等。

目录
第1章 计算机视觉与深度学习 13
1.1 计算机视觉与深度学习的关系 14
1.1.1 人类视觉神经的启迪 14
1.1.2 计算机视觉的难点与人工神经网络 14
1.1.3 应用深度学习解决计算机视觉问题 14
1.2 计算机视觉学习的基础与研究方向 15
1.2.1 学习计算机视觉结构图 15
1.2.2 计算机视觉的学习方式和未来趋势 15
1.3 本章小结 16
第2章 Python的安装与使用 17
2.1 Python基本安装和用法 18
2.1.1 Anaconda的下载与安装 18
2.1.2 Python编译器PyCharm的安装 18
2.1.3 使用Python计算softmax函数 18
2.2 TensorFlow类库的下载与安装(基于CPU模式) 19
2.3 TensorFlow类库的下载与安装(基于GPU模式) 20
2.3.1 CUDA配置 20
2.3.2 cuDNN配置 20
2.4 OpenCV类库的下载与安装 21
2.5 Python常用类库中的threading 22
2.5.1 threading库的使用 22
2.5.2 threading模块中最重要的Thread类 22
2.5.3 threading中的Lock类 22
2.5.4 threading中的join类 22
2.6 本章小结 23
第3章 Python数据处理及可视化 24
3.1 从小例子起步——NumPy的初步使用 25
3.1.1 数据的矩阵化 25
3.1.2 数据分析 25
3.1.3 基于统计分析的数据处理 25
3.2 图形化数据处理——Matplotlib包的使用 26
3.2.1 差异的可视化 26
3.2.2 坐标图的展示 26
3.2.3 玩个大的数据集 26
3.3 深度学习理论方法——相似度计算 27
3.3.1 基于欧几里得距离的相似度计算 27
3.3.2 基于余弦角度的相似度计算 27
3.3.3 欧几里得相似度与余弦相似度的比较 27
3.4 数据的统计学可视化展示 28
3.4.1 数据的四分位 28
3.4.2 数据的四分位示例 28
3.4.3 数据的标准化 28
3.4.4 数据的平行化处理 28
3.4.5 热点图-属性相关性检测 28
3.5 Python数据分析与可视化实战——某地降水的关系处理 29
3.5.1 不同年份的相同月份统计 29
3.5.2 不同月份之间的增减程度比较 29
3.5.3 每月降水是否相关 29
3.6 本章小结 30
第4章 深度学习的理论基础——机器学习 31
4.1 机器学习基本分类 32
4.1.1 基于学科的分类 32
4.1.2 基于学习模式的分类 32
4.1.3 基于应用领域的分类 32
4.2 机器学习基本算法 33
4.2.1 机器学习的算法流程 33
4.2.2 基本算法的分类 33
4.3 算法的理论基础 34
4.3.1 小学生的故事——求圆的面积 34
4.3.2 机器学习基础理论——函数逼近 34
4.4 回归算法 35
4.4.1 函数逼近经典算法——线性回归算法 35
4.4.2 线性回归的姐妹——逻辑回归 35
4.5 机器学习的其他算法——决策树 36
4.5.1 水晶球的秘密 36
4.5.2 决策树的算法基础——信息熵 36
4.5.3 决策树的算法基础——ID3算法 36
4.6 本章小结 37
第5章 计算机视觉处理库OpenCV 38
5.1 认识OpenCV 39
5.1.1 OpenCV的结构 39
5.1.2 从雪花电视谈起——在Python中使用OpenCV 39
5.2 OpenCV基本的图片读取 40
5.2.1 基本的图片存储格式 40
5.2.2 图像的读取与存储 40
5.2.3 图像的转换 40
5.2.4 使用NumPy模块对图像进行编辑 40
5.3 OpenCV的卷积核处理 41
5.3.1 计算机视觉的三种不同色彩空间 41
5.3.2 卷积核与图像特征提取 41
5.3.3 卷积核进阶 41
5.4 本章小结 42
第6章 OpenCV图像处理实战 43
6.1 图片的自由缩放以及边缘裁剪 44
6.1.1 图像的扩缩裁挖 44
6.1.2 图像色调的调整 44
6.1.3 图像的旋转、平移和翻转 44
6.2 使用OpenCV扩大图像数据库 45
6.2.1 图像的随机裁剪 45
6.2.2 图像的随机旋转变换 45
6.2.3 图像色彩的随机变换 45
6.2.4 对鼠标的监控 45
6.3 本章小结 46
第7章 Let's play TensorFlow 47
7.1 TensorFlow游乐场 48
7.1.1 I want to play a game 48
7.1.2 TensorFlow游乐场背后的故事 48
7.1.3 如何训练神经网络 48
7.2 Hello TensorFlow 49
7.2.1 TensorFlow名称的解释 49
7.2.2 TensorFlow基本概念 49
7.2.3 TensorFlow基本架构 49
7.3 本章小结 50
第8章 Hello TensorFlow,从0到1 51
8.1 TensorFlow的安装 52
8.2 TensorFlow常量、变量和数据类型 53
8.3 TensorFlow矩阵计算 54
8.4 Hello TensorFlow 55
8.5 本章小结 56
第9章 TensorFlow重要算法基础 57
9.1 BP神经网络简介 58
9.2 BP神经网络两个基础算法详解 59
9.2.1 最小二乘法详解 59
9.2.2 道士下山的故事——梯度下降算法 59
9.3 TensorFlow实战——房屋价格的计算 60
9.3.1 数据收集 60
9.3.2 模型的建立与计算 60
9.3.3 TensorFlow程序设计 60
9.4 反馈神经网络反向传播算法介绍 61
9.4.1 深度学习基础 61
9.4.2 链式求导法则 61
9.4.3 反馈神经网络原理与公式推导 61
9.4.4 反馈神经网络原理的激活函数 61
9.4.5 反馈神经网络原理的Python实现 61
9.5 本章小结 62
第10章 TensorFlow数据的生成与读取 63
10.1 TensorFlow的队列 64
10.1.1 队列的创建 64
10.1.2 线程同步与停止 64
10.1.3 队列中数据的读取 64
10.2 CSV文件的创建与读取 65
10.2.1 CSV文件的创建 65
10.2.2 CSV文件的读取 65
10.3 TensorFlow文件的创建与读取 66
10.3.1 TFRecords文件的创建 66
10.3.2 TFRecords文件的读取 66
10.3.3 图片文件的创建与读取 66
10.4 本章小结 67
第11章 卷积神经网络的原理 68
11.1 卷积运算基本概念 69
11.1.1 卷积运算 69
11.1.2 TensorFlow中卷积函数实现详解 69
11.1.3 使用卷积函数对图像感兴趣区域进行标注 69
11.1.4 池化运算 69
11.1.5 使用池化运算加强卷积特征提取 69
11.2 卷积神经网络的结构详解 70
11.2.1 卷积神经网络原理 70
11.2.2 卷积神经网络的应用实例——LeNet5网络结构 70
11.2.3 卷积神经网络的训练 70
11.3 TensorFlow实现LeNet实例 71
11.3.1 LeNet模型分解 71
11.3.2 使用ReLU激活函数替代Sigmoid 71
11.3.3 程序的重构——模块化设计 71
11.3.4 卷积核和隐藏层参数的修改 71
11.4 本章小结 72
第12章 卷积神经网络公式的推导与应用 73
12.1 反馈神经网络算法 74
12.1.1 经典反馈神经网络正向与反向传播公式推导 74
12.1.2 卷积神经网络正向与反向传播公式推导 74
12.2 使用卷积神经网络分辨CIFAR-10数据集 75
12.2.1 CIFAR-10数据集下载与介绍 75
12.2.2 CIFAR-10模型的构建与数据处理 75
12.2.3 CIFAR-10模型的细节描述与参数重构 75
12.3 本章小结 76
第13章 猫狗大战——实战AlexNet图像识别 77
13.1 AlexNet简介 78
13.1.1 AlexNet模型解读 78
13.1.2 AlexNe工程序的实现 78
13.2 实战猫狗大战——AlexNet模型 79
13.2.1 数据的收集与处理 79
13.2.2 模型的训练与存储 79
13.2.3 使用训练过的模型预测图片 79
13.2.4 使用Batch_Normalization正则化处理数据集 79
13.3 本章小结 80